YouCubed is wrong about giftedness

I recently watched this video produced by YouCubed and Jo Boaler that talks about giftedness. Essentially, the video argues that labeling students as gifted presents equity issues and does a disservice to students by giving them a fixed idea of what they can learn and do as well as how they should behave.

Giftedness is real. One definition of “gifted” is “a high level of intelligence [indicative of] advanced, highly integrated, and accelerated development of functions within the brain” (Clark, 2013). The Elementary and Secondary Education Act defines gifted students as those who “give evidence of high achievement capability … and who need services or activities not ordinarily provided by the school in order to fully develop those capabilities.” Just as some individuals have extraordinary artistic or athletic talents, some students have significant intellectual gifts. Acknowledging this fact does not force us to believe that some students cannot learn math. Nor does it force us to set limits on what we think students can learn and do.

The problem, I think, is that YouCubed has conflated the concept of giftedness with how this concept has been applied in schools. Even if many teachers and schools wrongly label and limit kids, that doesn’t mean giftedness is not a useful concept. It simply means that teachers need to do better with how we use the idea of giftedness.

This argument refers to ineffective and inappropriate uses of giftedness to suggest that gifted education is inherently inequitable. But we can provide services to gifted students without limiting other children’s potential. It’s bad teaching to suggest that gifted students should always know the answer or should not ask questions. Similarly, it’s bad teaching to suggest that non-gifted students cannot learn high levels of math or to place false limitations on what students can do. But these are problems with teacher behavior. These are not problems with the idea of gifted education.

Indeed, our developing knowledge of neuroplasticity and the idea that brains experience significant growth and change actually support labeling students as gifted. Why? Because acknowledging the incredible potential that some students have forces us to consider ways to help them realize that potential.

Is it inequitable to provide services such as enriched classes to gifted students? No. Equity means allowing every student the opportunity to achieve his or her potential. Equity does not mean offering the exact same opportunities to every student. Our obligation as educators is to create an environment that helps every student to learn and grow as much as possible. We can do so while accepting that some students learn faster or slower, that some students require more support or greater challenges.

Is everyone gifted? No. But that doesn’t mean we should place artificial limits on what students can learn and do. It’s okay to acknowledge the great intellectual capacity and potential that gifted students have. We can do this without saying that gifted students are better or deserve more. We cannot afford to avoid labeling gifted students, however, because doing so will make it harder to meet the needs of exceptional learners.

Note: I wrote a draft of this post after initially viewing the YouCubed video last month. I’ve fleshed out some of my commentary, but it remains mostly the same as I left it late in the evening on November 9th.

References

Clark, B. (2013). Growing up gifted: Developing the potential of children at home and at school. Boston: Pearson.

Elementary and Secondary Education Act, 20 U.S.C. § 7801 (1965).

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s